
Managing and Deploying Applications on a Quorum blockchain network
20.10.2020

Dr. Enis Karaarslan, MSKU
Umutcan Korkmaz, MSKU
Melih Birim, Tubu.io
Şafak Öksüzer, Tubu.io

Table of Contents
Introduction 2

Node Setup 3
Node Install 3
Node Test 4

Create a Decentralized App 6
Connect to an Available Network 6
Create a new application 6
Deploy Contract 7

Interact with Smart Contract 10
Share Application 11
Create Api Key 11
Deploying New Version 12
Accessing Contract Details 13

Version Notes:

- V 1.0 - 20.10.2020
Latest version of this document can be obtained at the project web site:
http://wiki.netseclab.mu.edu.tr/index.php?title=Decentralized_Solutions_for_Humanity_(DS4H)_Bloc
kchain_Network_Project

http://wiki.netseclab.mu.edu.tr/index.php?title=Decentralized_Solutions_for_Humanity_(DS4H)_Blockchain_Network_Project
http://wiki.netseclab.mu.edu.tr/index.php?title=Decentralized_Solutions_for_Humanity_(DS4H)_Blockchain_Network_Project

1.Introduction

This report will include the details to deploy a DS4H similar blockchain network:

● Node setup
● Creating a decentralized application
● Interact with Smart Contract

We deployed our Decentralized Resource Management System (NGO-RMSD) (STK-AKYS Sivil
Toplum Kuruluslari Afet Kaynak Yönetim Sistemi) on the DS4H network by using the tubu.io
platform.

This platform is preferred for its user friendly interface and to manage the projects easily. The
details of installing a blockchain network and using this platform is given in this report.

A sample contract in the environment is as follows:

2.Node Setup
Nodes will be installed on sites and will work autonomously. However, still there should be a point of
contact; to reboot the device or issue basic commands for the network connectivity when needed.

Node which will run the blockchain network are ordinary PC Hardware whose hardware specs are
(minimum):

● 4 core CPU
● Min 8 gb RAM,
● Sufficient disk (Min 512 GB)

The operating system (OS):
● ubuntu 16.04+
● preferably no GUI

Network:
Static IP address (the network IP addresses should be static and known, so that further security
measures can be taken
The following TCP ports (at firewall) should be open (inbound/outbound) for the network
communication

● Consensus Port : 50405
● P2P Port : 30305
● WS Port: 8545
● RPC Port: 8645

Software

● Docker
● Quorum

Node Install

As machine name and user in setup;

● Machine name; DS4H-00X (where X will be the id given to you)
● It is recommended to make "DS4H-00x" for the username "username" that you use with root

right.

Make all updates

To make the hostname definition later:

● hostnamectl
● sudo hostnamectl set-hostname DS4H-00X (where X will be your given id)

Disable sleep

● sudo systemctl mask sleep.target suspend.target hibernate.target hybrid-sleep.target

Static IP Address identification

It will be necessary to make a static definition in the "01-network-manager-all.yaml" file for ubuntu
on devices purchased from the project.
Guide:
https://linuxize.com/post/how-to-configure-static-ip-address-on-ubuntu-18-04/#:~:text=Configuring%
20Static%20IP%20address%20on%20Ubuntu% 20Desktop, -Setting% 20up 20 %a & text = Click
20% ten% 20cog 20% icon, ten% the 20% E2 80% 9CApply% E2 80% 9D% 20button

● Docker setup
○ sudo apt update
○ sudo apt install apt-transport-https ca-certificates curl software-properties-common
○ curl -fsSL​ ​https://download.docker.com/linux/ubuntu/gpg​ | sudo apt-key add -
○ "sudo nano /etc/apt/sources.list.d/additional-repositories.list" and add

deb [arch=amd64]​ ​https://download.docker.com/linux/ubuntu​ bionic stable

○ sudo apt update
○ apt-cache policy docker-ce
○ sudo apt install docker-ce
○ sudo systemctl status docker
○ sudo usermod -aG docker ${USER}
○ su - ${USER}
○ id -nG
○ sudo usermod -aG docker USER-NAME

● docker control
○ docker ps

● Make and Install Quorum setup scripts
○ Quorum version 2.7.0 is used.
○ Geth is configured with the specified ports and IP addresses of the specified nodes

Node Test
- Ensure geth is morking

Ps -efl | grep geth
- ./attach.sh console

To see our four p2p nodes:

> raft.cluster

raft.cluster
[{

hostname: "194.27.153.191",
nodeActive: true,
nodeId:

"ae5066f7519128d467b07913cce08f21bb0da33f231b949262c31bfc0cdbb52b6a17fe27a69d37ff8
ed85b7b5f95bfee8f3842aa1c2dffc445e247747a2a6ea9",

https://download.docker.com/linux/ubuntu/gpg
https://download.docker.com/linux/ubuntu/gpg
https://download.docker.com/linux/ubuntu
https://download.docker.com/linux/ubuntu

p2pPort: 30305,
raftId: 1,
raftPort: 50405,
role: "verifier"

}, {
hostname: "193.140.28.224",
nodeActive: true,
nodeId:

"108a88e19db7c27f0d774cd1fd674eafbb76ce1692125d8971f6c996601f5eec7fe0e68c51d07645
8264f0d6d60d9f8f4cfb0abc3e9aa12f1025d09c659224ff",

p2pPort: 30305,
raftId: 3,
raftPort: 50405,
role: "verifier"

}, {
hostname: "34.65.212.13",
nodeActive: true,
nodeId:

"41574083e9a74fe82110ca942179a51c090a085e89d3a02c7b872fdb43e70eef9e2d34b3de79fd0
42549ef2deec64a4cb219c0b3404f73afa8bbf9172da0c241",

p2pPort: 30305,
raftId: 4,
raftPort: 50405,
role: "minter"

}, {
hostname: "79.123.237.60",
nodeActive: true,
nodeId:

"2de4bdc1d5632460edbbb7ef3dd47049bcc5c3abf4a6be3e88e393144dfa520e7fe0165bafd78149
e15872f3fdf6aa26eb16d91291e748827da74dfbf0fa6753",

p2pPort: 30305,
raftId: 2,
raftPort: 50405,
role: "verifier"

}]

3.Create a Decentralized App
Creating the decentralized App (Dapp) is a really simple flow. All you have to do is to follow
the steps below:

● Connect to an Available Network
● Create a new application
● Deploy Contract

Connect to an Available Network

Tubu.io platform serves different networks with different blockchain versions and ledgers.
We created and used the “BC4H” quorum network. Appropriate network or the test network
can be selected and the “use” button of that network can be clicked to continue with the
process.

Create a new application

In this step, you are expected to create a new application or select one from the listed

existing applications. Click the detail button to carry on with an existing application

http://docs.tubu.io/#/create-first-app?id=create-first-app
http://docs.tubu.io/#/create-first-app?id=connect-available-network

After you create and select your desired application, you will face the application details
screen. In this stage, you can deploy a brand new smart contract by clicking deploy new
contract with “Deploy new contract” button or select an existing one by clicking the “view”
button.

Deploy Contract

When it comes to deploying contracts, there are two options. Deploying a contract from the
“sample contracts” tab, or deploying a custom new contract from the ”custom contracts” tab.

Here you can see the sample contracts provided for you to deploy.

You can select the contract you desire to continue deploying the process by clicking on the
“select” button. After you select the contract, a modal will pop-up for you to provide the
details to the contract. Regarding details are the name, description, tag (optional) and the
constructor parameters (if they exist in the contract) of the contract.

Clicking on the “deploy” button will finish the deployment process. Then you can see your
freshly deployed contract in the application details screen.

If you want to deploy your own contract, the “custom contracts” tab can be used.

After you fill the name, description, tag of the contract, you are expected to upload the
contract (.sol file). Afterwards, you have to provide the constructor parameters of your
contract (if they exist in the contract).

Clicking on the “deploy” button will finish the deployment process. Then you can see your
freshly deployed contract in the application details screen.

4. Interact with Smart Contract
After you deploy your contract, you will want to interact with your contract such as “Invoke”
or “Call” the methods in it. Application details page provides every necessary information to
interact with your contract.

The following processes will be given in the subsections:

● Share Application
● Create Api Key
● Deploying New Version
● Accessing Contract Details
● Using SDKs

Share Application

If you want your contracts to be managed by others, you can share them. If you click on the
“share” button, a screen will appear for you to provide the email address of the person you
want to cooperate with on your application.

Create Api Key

You will have to have an Api Key for the application in order to interact with the contracts in
it from the SDK side. To create an Api Key, click on the “generate” button. Afterwards, click
“Generate” to confirm, “Cancel” to revert.

Deploying New Version
You can deploy a new version to a pre-deployed contract. After deploying, you will access
the latest deployed contract by default. If you want to access a specific version from the
SDK, you will have to provide the tag you entered while deploying the version. If you
haven't provided a tag in the first deployment of the contract, the default tag is 'v1.0'. You
can see your different versions in the Contract Details page.

In order to deploy a new version, you have to click on the “version” button. That will open up
a modal just like the one back in the deploying contract process. You have to provide the
necessary information (this time the tag is obligatory) in the model, select your contract and
deploy it.

Accessing Contract Details

In order to see the methods, versions, accounts of the contract, you can click on the “view”
button. Clicking on that button will direct you to the contract details page.

Here you can see the total request number, the versions, the methods, method inputs and
method outputs and the accounts of the contract. You can click on the method name to see
the inputs and outputs of the method. If you want to add an account to the contract, just
click on the “add account” button and type the name of the account to the field in the
selected model.

