Toward Automated Vulnerability Handling

Takeshi Takahashi*

, Hideaki Kanehara*!, Masaki Kubo* Noboru Murata*t, and Daisuke Inoue*

*National Institute of Information and Communications Technology, Tokyo, Japan
tWaseda University
E-mail: takeshi_takahashi@ieee.org

Abstract—To maintain acceptable levels of security, organiza-
tions must manage their IT assets and related vulnerabilities.
However, this can be a considerable burden because their
resources are often limited. We have been working on a technique
and system architecture that monitor the vulnerability of the IT
assets on an organization’s administrative networks. It deter-
mines identifiers of IT assets to locate vulnerability information
pertaining to the assets. When vulnerability information pertain-
ing to the assets is found, it changes the network configuration
to mitigate any possible impacts on the organization. However,
there are several hurdles that hinder the development of such
techniques. This paper discusses the main such issues.

I. INTRODUCTION

To cope with the increasing amount of cyber threats, or-
ganizations need to take care of software vulnerabilities on
their networks. Considering their constrained resources, it is
desirable to automate and streamline IT asset and vulnerability
management operations.

We have been working on the automation of IT asset
vulnerability management on administrative networks, using
open data and standardized tools. Common Platform Enu-
meration (CPE) and Common Vulnerabilities and Exposures
(CVE) [1] provide identifiers, i.e. CPE identifiers (CPE-ID)
and CVE identifiers (CVE-ID). A CPE-ID identifies classes
of applications, operating systems (OSs), and hardware devices
present among a company’s computing assets. Along with the
CPE specifications, a list of CPE-IDs is published online as an
official CPE dictionary[2]. We can easily locate CPE-IDs using
the dictionary. Likewise, a CVE-ID identifies publicly known
cybersecurity vulnerabilities. Along with security identifiers,
we use online vulnerability information repositories, such as
the National Vulnerability Database (NVD) [3] and Japan
Vulnerability Notes (JVN) [4].

Based on these open data and standardized tools, we have
been working on a mechanism that automatically collects IT
asset information, determines its identifiers, identifies relevant
vulnerability information, and then implements actuations [5].
This paper describes the overview of the mechanism and
discusses the issues that may become wheels for expediting
automated vulnerability handlings.

II. AUTOMATED VULNERABILITY MONITORING

Figure 1 shows the typical networks we assume. We define
the following five roles. A terminal is any terminal used by
employees to carry out their duties within an organization. A
software module called an “agent” is installed on the terminal.

Asset management

Admin server

console Software

switch)
%I”Z

I I

= MH

Internet - ,; @

Vulnerability
knowledge
base

K.

N

'~

Terminal

Terminal Terminal

Fig. 1. Typical network

An asset management server is a server that stores asset
information collected by the agents or collected by the server
itself. This role also encompasses assigning an identifier for
each piece of asset information and storing the identifier along
with the asset information itself. A vulnerability knowledge
base is a database that stores vulnerability information related
to vulnerability [6]. An administration console is a terminal
used by the system administrator. It receives an alert when a
vulnerability is discovered. A software switch is a switch that
accepts actuation commands.

Figure 2 shows the process flow of our mechanism. The pro-
cess begins by collecting information on the IT assets within
an organization’s administrative networks. The asset man-
agement server collects information by querying the agents
installed on terminals. The types of information collected by
the system include the software name, version, and vendor
name of the OS and installed applications, as well as IP and
MAC addresses.

The server then generates IT asset identifiers, i.e. CPE-IDs,
from the IT asset information. In order to determine a CPE-
ID, we introduce a parameter called the matching rate, which
is calculated as the percentage of the characters that match the
query. We choose the CPE-ID that shows the highest matching
rate, although we judge that no CPE-ID is found if we do not
find a CPE-ID with a matching rate that is higher than a certain
threshold value. Upon finding the CPE-ID, we add it to the
aforementioned asset information. [7]

The server then queries the vulnerability knowledge base
about the identifiers so that it can find vulnerability informa-
tion pertaining to the IT assets. In our prototype, we retrieve
only NVD information through the cybersecurity knowledge
base for simplicity. We search for a match in the NVD file,
inside the <vuln:product>element, and extract the CVE-IDs

[Start

v

]
]4—
]

[Collect IT asset information
[Generate IT asset identifiers

Wait for a trigger
[Look up the Vulnerability KB] 7 I

[Evaluate vulnerability]

[Generate and send alerts]

[Generate and send actuation commands]7

Fig. 2. Process flow

of the matched entries. If a matching NVD is found, it is
determined that a vulnerability exists in that particular asset.

If any such information is found, the server evaluates the
severity of the information, generates alerts, and sends them
to the system administrator if needed. At the same time,
the server generates actuation commands and sends them to
network devices that need to change their configurations to
mitigate any possible consequences of the vulnerabilities'. The
actuation commands can, for instance, prune the vulnerable
device from the network or switch the device’s current network
to a quarantine network by changing the configurations of net-
work devices. Please note that our current implementation uses
Ansible over SSH connections to change the configurations of
network devices.

After the actuation commands are sent, the server then
waits for the next trigger to run this process again; the
trigger could be a time out or any evincive instructions by
administrators. This operation will continue so that the server
can continuously monitor the vulnerabilities of the IT assets.

III. ISSUES ON AUTOMATED VULNERABILITY HANDLING

There are several issues that could be better addressed for
expediting automated vulnerability handling.

Actuation instructions: Actuation commands are sent to
the network appliances through their own interfaces, such
as NETCONF and REST APIs. As discussed in [8], those
REST APIs differ among the vendors and appliances. Even
if NETCONF is supported, its supported data models differ
among vendors and thus it still allows room for custom
descriptions among the appliances. There are even appliances
without useful network APIs, and thus we need to access them
through SSH connections.

Automated severity determination: When implementing
countermeasures, severe vulnerability needs to be addressed
first. For this purpose, we need to know the severity of
vulnerabilities. We currently have the Common Vulnerability
Scoring System (CVSS) score, but it is calculated manually at
present. We have been working on the automated calculation

'In practice, we may prepare a step where a human operator reviews the
actuation commands and authorizes their execution.

of the score using the descriptions of vulnerability notes,
and it is feasible by using machine learning. However, the
current description information does not necessarily contain
detailed information for automated calculation. More detailed
descriptions will help with the more accurate calculation of
such scores. There is vulnerability description ontology [9].
By using it, the description becomes more detailed and helps
machine learning algorithms to produce accurate scores.

Scoring method: The aforementioned CVSS is widely
used these days, but the score is not desirable for automated
actuations because many of the scores indicate a critical
situation, and most of them will not be exploited. A greater
distinction between vulnerabilities likely to be exploited and
those not likely to be exploited should be differently scored
to avoid unnecessary actuations.

Official CPE dictionary: Our algorithm determines CPE-
IDs using the official CPE dictionary, but it does not list all
CPE-IDs; indeed many unlisted CPE-IDs are used in NVD.
Moreover, the CPE dictionary sometimes contains inaccurate
information”. Having said that, the CPE-ID is already used
even if it violates the naming rule. More CPE-IDs should be
accurately listed in the official dictionary so that algorithms
can accurately determine CPE-IDs.

IV. SUMMARY

Several issues stand against automated vulnerability han-
dling, including detection and actuation. We believe that
reinforcing common interfaces and structured data expedites
further developments of security operation automation tech-
niques. Please note that this work was supported by a grant
from the Japan Society for the Promotion of Science (JSPS
KAKENHI grant number 17K12699).

REFERENCES

[1] ITU-T. Common vulnerabilities and exposures. International Telecom-
munications Union, Geneva, Switzerland, 2014. ITU-T Recommendation
X.1520.

[2] National Institute of Standards and Technology. Official common platform
enumeration (cpe) dictionary. https://nvd.nist.gov/cpe.cfm, 2016.

[3] National Institute of Standards and Technology. National Vulnerability
Database (NVD). http://nvd.nist.gov/, 2016.

[4] JPCERT/CC and IPA. Japan Vulnerability Notes. http://jvn.jp/, 2014.

[S] T. Takahashi, D. Miyamoto, and K. Nakao. Toward automated vulnera-
bility monitoring using open information and standardized tool. In /IEEE
International Conference on Pervasive Computing and Communications.
2016.

[6] Takahashi T, Panta B, Kadobayashi Y, et al. Web of cybersecurity:
Linking, locating, and discovering structured cybersecurity information.
International Journal of Communication Systems, 2017.

[7] T. Takahashi, and D. Inoue. Generating software identifier dictionaries
from vulnerability database. In /4th Annual Conference on Privacy,
Security and Trust, 2016.

[8] Takahashi T, Tsuda Y, Suzuki K, et al. Toward automated threat detection
and actuation. In Coordinating Attack Response at Internet Scale. 2019.

[9] NIST. Vulnerability Description Ontology(VDO). National Institute of
Standards and Technology, Maryland, USA, 2016. NIST Interagency
Report 8138.

2For instance, Hidemaru’s CPE-ID violated the rules. The CPE-ID in the
official CPE dictionary is “cpe:/a:hidemaru:editor:8.00,” but this is against the
naming rule of the CPE specification. According to the naming rule, we need
to concatenate the vendor name and product name instead of the vendor name
and type of product. Accordingly, the correct CPE-ID for Hidemaru should
be “cpe:/a:SaitohKikaku:Hidemaru:8.00.”

