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Abstract 
With insider threats still being a significant factor in the growing attack surface, technology and industry 
is adopting analytics and machine learning techniques to improve the automation and time to detect a 
vulnerability or potential threat.  This paper proposes the additional use of a risk scoring mechanism 
based on differential analysis as a means to dynamically assess potential risk incurred by a system. 
 

Introduction 
Insider threat statistics from various security reports show that over 50% of the security incidents observed 
or incurred by organizations were due to employees.  More importantly, over 53% of the attacks resulted 
in significant financial damages [1]. This highlights businesses strong concern about employees 
inappropriately sharing data or company assets or plain carelessness (e.g. from suspicious downloads, asset 
loss or being inadvertently phished).   

The average network today, while using monitoring and security tools, is insufficiently equipped to 
automatically detect that they are being probed, let alone to understand the risks. Nonetheless, both classical 
and software defined (SDN) networks still require a human-in-the-loop to affect configuration, control and 
final assessment of a threat from controlled monitoring and observed security events. This human factor is 
the element of strength and yet a point of failure. That is, with the existence of security tools, the wealth of 
available data to analyze, and Security Information and Event Management (SIEM) tools, humans can still 
“miss” critical events.  Additionally, improving the efficacy of detection often requires a faster and more 
dynamic closed loop function. 

With the need for such a dynamic closed loop and improved automation, the cybersecurity industry is 
already embracing and leveraging the use of analytics and machine learning whether it be referred to as 
Intent Based Network or Secure Defined Networks [2].  While it is a growing trend, and their efficacy for 
detection is improving, there is still much room for improvement in both greatly reducing the false positives 
and the time to detection [3]. 

For such a closed loop function, we propose another element to the dynamic system: the use of differential 
analysis. While diverse assessments including the use of machine learning techniques are used, they lack 
the sensitivity analysis needed to measure how baseline network metrics change given the input. Thus, 
control can be managed by both, the expected behavior and the underlying sensitivity of the network.  A 
good example is the rate of change of bandwidth in a network being more meaningful for the closed loop 
control than the measure of bandwidth over time. 

This paper proposes to leverage quantitative measurements as a means to determine the network sensitivity 
as a means to dynamically improve the access controls in real-time.  The controls are another means of 
affecting a dynamic network segmentation through a two-step process: 

1) first, measure behavior quantitatively to derive a trust score (Trust Degradation Factor), and  



2) second, enabling improved access control through the trust score influence.   

Further details of the proposed Trust Degradation Factor and its use are described in this paper. 

Measurements and Metrics 
In a world of finite resources and time, assessment of a network will follow the aspects of any system from 
the point of view of the perceived Risk at the time of design or deployment.  In other words, these guarantees 
are limited to the amount of accepted risk. As in most risk assessments, risk is decomposed into terms of 
likelihood and impact:  

Risk = Likelihood × Impact 
 

Likelihood: For many cases, the likelihood (e.g. probability) is the method that correlates the present to 
the known-part from the past. This paper further augments the likelihood for the unknown as an exponential 
cost growth function to follow Solow’s economic growth impact [7] (degradation over time). In other 
words, the likelihood will change purely with time regardless of the operational data.     
 
Impact: The impact is associated with the existence of a cost. Impact is typically defined as the utility value 
of the system. As a consequence, when the impact of a threat is fully materialized, it is quantified to be 
limited by the utility value of the system it threatens. Simply put, the maximum threat to a $1-dollar 
investment is $1 whereas the maximum threat to $1B is $1B.   
 
Risk: Risk is the product of Likelihood and Impact. Many standards govern the computation of risk. For 
example, in economic point of views, risk is viewed as an optimal answer to a cost function across the 
whole system. Comparatively, today’s cyber-security strategies are a collection series of human defined 
scenarios such as SDN (not optimally minimizing the overall risk). 
 
 

Use Case MW-1: virus attack based on network modulation 
A “speculative” example of a new class of risk and therefore the mitigation strategy addressed in this 
document is as follows:  Algebraic modulation (e.g. non-random) are made in the time delay between 
packets in TCP sessions. For example, a network sniffer can be used to decode the algebraic modulations 
somewhere between the end-points if not at the opposite peer.  The modulation measurements serve as the 
means to establish a data point that can be used to determine if a network is being overloaded or under 
attack unbeknownst to either peer. 

 

Network Trust Degradation Concepts 
 
The choice of using the OSI model is intentional as it points to meet the stated MW-1 use case. MW-1 takes 
advantage from the main innovation of the Internet nature which is artificial time. Artificial time occurs 
with the reordering of data arrival frames on a new sequence such as demultiplexing. This novelty renders 
the communication dimensions asynchronous and as such, a manifestation of a frame (i.e., packet) can 
arrive any time and out of order.  
A major outcome of the derived arbitrary sense of time is the need to analyze the newly created data-time 
and thus their frequency spectrums. With demultiplexing, it is often expected that the derived spectrums 



will be different from the true input to accommodate for the allowed data reordering among the data sets. 
The newly created spectrums are artifacts of demultiplexing. Demultiplexing observations are linear in their 
spectrum mappings. This spectrum assumption also holds inversely on a multiplexing process.  
The focus is on the constant (that is pointed out when applying Shannon’s theorem) on the 
information content carried by the packet reordering. It can be deduced that any transformation 
scheme cannot increase the total information exchange but can only decrease or equate it. Measuring 
this constant and its variability over time is essential in determining the maximum information that 
occurs at the interface [9][10].   
For digital data, the discrete Fourier Transforms (DFT) is the desired analytical function to occur over an 
arbitrary time index [6].  For completeness in the introspection of the data, the signal phases are also 
considered.  Digitization fails to account for the known impact signal phases have and they are therefore 
considered the lossy aspect of the digitization, the DFT analytical functions will therefore compensate phase 
shifts with the corresponding frequency adjustments [7][8]. 
The data set represents the layer 2 behavior over an IP network. The quasi-physical quantity parameters 
modeled in the table below are the differential times between real time and their corresponding offsets, or 
the delays. Lengths are also valid dimensions. In general, models for the data sets for I/O for physical 
entities are from the frames over serialization transmissions or other transmission/reception. This will also 
extend to all observation models. 
 

The table below summarizes common data sets calculated for operational and their reflection of 
physical world measurements: 

 
 

Operational Data Vectors Variables Original Spectrum Dimensions 

Dimension(s) e.g. Bandwidth Size Size 

Absolute(s) e.g. Time Differential  

Relativity(ies) e.g. Offsets  OSI model suggests the option to reshuffle the 
measurements ordering for layer 3. 

Type(s) E.g. dimensions and 
mux/demux  

OSI model suggests new virtual dimensions 
based on unique identifications (IP, protocol, 
ports). 

 

Trust Erosion (Degradation) Factor (TEF) 
 
The concept behind building a Trust Function or Factor (TF) score, is to assess the risk accrued by the 
deviations.  Trust degradation is a precursor index to failure [4][5]. The use cases of scoring the trust 
degradation in a system can apply to almost every aspect in networking, edge and cloud included. A well 
devised TEF will cover many use cases: for example (1) better and adaptive asset management (e.g., 
software updates); (2) better and adaptive digital asset certifications; (4) troubleshooting; and (5) real-time 
scalability and risk assessment for extremely large network, for example in federated cloud environment. 
The features of a digital trust scoring will start to reflect the risk or trust created on day 0.  
The goal of dynamic segmentation is to assert the foundational risk factors for a system interaction and 
therefore their dynamic grouping (segmentation). Policies becomes an artifact of continuous change. Either 
way, TEF makes one clear assumption beyond the underlying data; that any (i.e. digital) system grows 
proportionally with complexity and time [11]. 
 

 



Access Control using TEF as a factor 

Dynamic access control can now be affected through the use of a TEF.  In the MW-1 use case, a network 
policy to “block malware”, in general, can now be affected once the TEF reaches a certain threshold. 
In a finer or dynamic network segmentation routing scenario, routing paths can be affected by enabling 
network devices to only connect to devices whose TEF is within an acceptable range. 
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