# dB Math

#### Marco Zennaro Ermanno Pietrosemoli



# Goals

- Electromagnetic waves carry power measured in milliwatts.
- Decibels (dB) use a relative logarithmic relationship to reduce multiplication to simple addition.
- You can simplify common radio calculations by using dBm instead of mW, and dB to represent variations of power.
- It is simpler to solve radio calculations in your head by using dB.

2

#### Power

- Any electromagnetic wave carries energy we can feel that when we enjoy (or suffer from) the warmth of the sun. The amount of energy received in a certain amount of time is called *power*.
- The electric field is measured in V/m (volts per meter), the power contained within it is proportional to the square of the electric field:

$$P \sim E^2$$

The unit of power is the *watt* (*W*). For wireless work, the *milliwatt* (*mW*) is usually a more convenient unit.

#### Gain and Loss

- If the amplitude of an electromagnetic wave increases, its power increases. This increase in power is called a *gain*.
- If the amplitude decreases, its power decreases. This decrease in power is called a *loss*.
- When designing communication links, you try to maximize the gains while minimizing any losses.

### Intro to dB

- Decibels are a relative measurement unit unlike the absolute measurement of milliwatts.
- The decibel (dB) is 10 times the decimal logarithm of the ratio between two values of a variable. The calculation of decibels uses a logarithm to allow very large or very small relations to be represented with a conveniently small number.
- On the logarithmic scale, the reference cannot be zero because the log of zero does not exist!

# Why do we use dB?

Power does not fade in a linear manner, but inversely as the square of the distance.

You move by x and the signal decreases by 1/x<sup>2</sup>; hence, the "inverse square law."

> I meter away  $\rightarrow$  some amount of power 2 meters away  $\rightarrow 1/4$  power at one meter 4 meters away  $\rightarrow 1/16$  power at one meter 8 meters away  $\rightarrow 1/64$  power at one meter

The fact that exponential relationships are involved in signal strength measurement is one reason why we use a logarithmic scale.

#### Inverse square law

• The *inverse square law* is explained by simple geometry. The radiated energy expands as a function of the distance from the transmitter.



**Figure from** 

#### A quick review of logarithms



The *logarithm* of a number in base 10 is the exponent to which ten must be raised in order to produce the number.

 Logarithms reduce multiplication to simple addition, because  $log(a \times b) = log(a) + log(b)$ 

### Definition of dB

- The definition of the decibel uses a logarithm to allow very large or very small *relations* to be represented with a conveniently small number.
- Let assume we are interested in the ratio between two values a and b.
- Ratio = a/b
- In dB the ratio is defined as:  $ratio_{[dB]} = 10 \log_{10} (a/b)$
- It is a dimensionless, relative measure (a relative to b)

### Definition of dB

- ratio =  $10 \log_{10}(a/b)$
- What if we now use a value of a that is 10 times bigger?
- newratio =  $10 \log_{10}(10a/b)$

Remember  $log(a \times b) = log(a) + log(b)$ 

$$= 10 \ [\log_{10}(10) + \log_{10}(a/b)]$$
  
= 10 \log\_{10}(10) + 10 \log\_{10}(a/b)  
= 10 + ratio

 The new value (in dB) is simply 10 plus the old value, so the multiplication by ten is now expressed by a simple addition of 10 units.

# Using dB

Commonly used (and easy to remember) dB values:

+10 dB = 10 times the power -10 dB = one tenth power +3 dB = double power -3 dB = half the power

, and the

For example:

some power + 10 dB = 10 times the power some power - 10 dB = one tenth power some power + 3 dB = double power some power - 3 dB = half the power

### dBm and mW

- What if we want to measure an absolute power with dB?
   We have to define a reference.
- The reference point that relates the logarithmic dB scale to the linear watt scale may be for example this:

#### $1\ mW \to 0\ dBm$

 The new m in dBm refers to the fact that the reference is one mW, and therefore a dBm measurement is a measurement of absolute power with reference to 1 mW.

#### dBm and mW

• To convert power in mW to dBm:

 $\mathbf{P}_{\mathrm{dBm}} = 10 \, \log_{10} \, \mathbf{P}_{\mathrm{mW}}$ 

10 times the *logarithm in base 10* of the "Power in mW"

• To convert power in dBm to mW:

$$P_{mW} = 10^{P_{dBm}/10}$$

10 *to the power of* ("Power in dBm" divided by 10 )

#### dBm and mW

- Example: mW to dBm Radio power: 100mW  $P_{dBm} = 10 \log_{10}(100)$  $100mW \rightarrow 20dBm$
- Example: dBm to mW

Signal measurement: I7dBm

$$P_{\rm mW} = 10^{17/10}$$

# Using dB

```
When using dB, gains and losses are additive.
Remember our previous example:
   some power + 10 \text{ dB} = 10 times the power
   some power - 10 \text{ dB} = one tenth power
   some power + 3 dB = double power
   some power - 3 dB = half the power
You can now imagine situations in which:
  10 \text{ mW} + 10 \text{ dB of gain} = 100 \text{ mW} = 20 \text{ dBm}
  10 \text{ dBm} = 10 \text{ mW} = \text{one tenth of } 100 \text{mW}
 20 \text{ dBm} - 10 \text{ dB} \text{ of } \log s = 10 \text{ dBm} = 10 \text{ mW}
 50 \text{ mW} + 3 \text{ dB} = 100 \text{ mW} = 20 \text{ dBm}
  17 \text{ dBm} + 3 \text{ dB} = 20 \text{ dBm} = 100 \text{ mW}
  100 \text{mW} - 3 \text{ dB} = 50 \text{ mW} = 17 \text{ dBm}
```

# Using dB



#### dB and milliwatts

It is easy to use dB to simplify the addition of gains and losses, then convert back to milliwatts when you need to refer to the absolute power. 1 mW = 0 dBm2 mW = 3 dBm4 mW = 6 dBm

- 8 mW = 9 dBm
- 10 mW = 10 dBm
- 20 mW = 13 dBm
- 50 mW = 17 dBm
- 100 mW = 20 dBm
- 200 mW = 23 dBm
- 500 mW = 27 dBm

1000 mW (1W) = 30 dBm

#### Simple dB math

```
How much power is 43 dBm?
    +43 dBm is 43 dB relative to 1 mW
    ▶ 43 dB = 10 dB + 10 dB + 10 dB + 10 dB + 3 dB
           1 \text{ mW x } 10 = 10 \text{ mW}
              x 10 = 100 \text{ mW}
              x 10 = 1000 \text{ mW}
              x 10 = 10\ 000\ mW
              x 2 = 20 000 \text{ mW}
                  = 20 W
     Therefore, +43 dBm = 20 W
```

#### What about negative values?

```
Negative doesn't mean bad. ;-)
```

```
How much power is -26 dBm?
    -26 dBm is ImW (0dBm) "minus" 26 dB
    -26 \text{ dB} = -10 \text{ dB} - 10 \text{ dB} - 3 \text{ dB} - 3 \text{ dB}
       1 \text{ mW} / 10 = 100 \mu W
          /10 = 10 \ \mu W
          /2 = 5 \,\mu W
          /2 = 2.5 \,\mu W \,(2.5*10^{-6} \,W)
    • Therefore, -26 dBm = 2.5 \mu W
```

#### Example using mW



#### Using mW

| Radio card power |  |        | Loss in pigtail | Power leaving Access<br>point | Loss of transmission line | Power entering antenna | Gain of antenna    | Power leaving antenna |
|------------------|--|--------|-----------------|-------------------------------|---------------------------|------------------------|--------------------|-----------------------|
|                  |  | 100 mW | loose half      |                               | loose half                |                        | 16 times the power |                       |
|                  |  |        | 100 mW / 2      | 50 mW                         |                           |                        |                    |                       |
|                  |  |        |                 |                               | 50 mW / 2                 | 25 mW                  |                    |                       |
|                  |  |        |                 |                               |                           |                        | 25 mW x 16         | 400 mW                |

#### Example using dB



#### Using dB

| Radio card power |  |        | Loss in pigtail | Power leaving Access<br>point | Loss of transmission line | Power entering antenna | Gain of antenna | Power leaving antenna |
|------------------|--|--------|-----------------|-------------------------------|---------------------------|------------------------|-----------------|-----------------------|
|                  |  | 20 dBm | -3 dB           |                               | -3 dB                     |                        | +12 dBi         |                       |
|                  |  |        | -3 dB           | I7 dBm                        |                           |                        |                 |                       |
|                  |  |        |                 |                               | - 3 dB                    | I4 dBm                 |                 |                       |
|                  |  |        |                 |                               |                           |                        | + 12 dBi        | 26 dBm (400m₩)        |

#### Conclusions

- Using decibels (dB) provides an easier way to make calculations on wireless links.
- The main advantage of using dB is that gains and losses are additive.
- It is simple to solve radio calculations in your head by using dB instead of using milliwatts.

# Thank you for your attention

For more details about the topics presented in this lecture, please see the book *Wireless Networking in the Developing World*, available as free download in many languages at:

http://wndw.net/

