Analysis of a Fair Exchange Protocol

Vitaly Shmatikov John Mitchell
Stanford University
Agreement in Hostile Environment

- Cannot trust the communication channel
- Cannot trust the other party in the protocol
- Trusted third party may exist
 - Last resort: use only if something goes wrong
Contract Signing

- Both parties want to sign the contract
- Neither wants to commit first

Immunity deal
Fairness

If A cannot obtain a contract, then B should not be able to obtain a contract, either

(and vice versa)

Example (Alice buys a house from Bob)

If Alice cannot obtain a deed for the property, Bob should not be able to collect Alice’s money
Accountability

If trusted party T misbehaves, then honest party should be able to prove T’s misbehavior.

Example (Alice buys a house from Bob)
If escrow service gives Bob Alice’s money without giving Alice the deed, Alice should be able to prove to a judge that escrow service is cheating.
Informal Protocol Description

Formal Protocol

Gee whiz. Looks OK to me.

Analysis Tool

Intruder Model
Murφ

[Dill et al.]

- Describe finite-state system
 - State variables with initial values
 - Transition rules
 - Communication by shared variables
 - Scalable: choose system size parameters
- Specify correctness condition
- Automatic exhaustive state enumeration
 - Hash table to avoid repeating states

Success with research, industrial protocol verification
Optimistic Contract Signing

\[m_1 = \text{sig}_A (\text{PK}_A, \text{PK}_B, T, \text{text, } \text{hash}(R_A)) \]
\[m_2 = \text{sig}_B (m_1, \text{hash}(R_B)) \]
\[m_3 = R_A \]
\[m_4 = R_B \]

[Asokan, Shoup, Waidner]
Several Forms of Contract

- Contract from normal execution
 \[m_1, R_A, m_2, R_B \]

- Contract issued by third party
 \[\text{sig}_T(m_1, m_2) \]

- Abort token issued by third party
 \[\text{sig}_T(\text{abort}, a_1) \]
Role of Trusted Third Party

• T can issue an *abort token*
 Promise not to resolve the protocol in the future

• T can issue a *replacement contract*
 Proof that both parties are committed

• T decides whether to abort or resolve on the first-come-first-serve basis

• T only gets involved if requested by A or B
Abort Subprotocol

\[m_1 = \text{sig}_A(... \text{hash}(R_A)) \]

\[a_1 = \text{sig}_A(\text{abort}, m_1) \]

\[a_2 \]

\[\text{sig}_T(m_1, m_2) \]

\[\text{sig}_T(\text{abort}, a_1) \]

resolved?
Yes: \[a_2 = \text{sig}_T(m_1, m_2) \]
No: \[\text{aborted} := \text{true} \]
\[a_2 = \text{sig}_T(\text{abort}, a_1) \]
Resolve Subprotocol

\[r_1 = m_1, m_2\]

\[r_2 = \text{resolved := true}\]

\[m_1 = \text{sig}_A(\ldots \text{hash}(R_A))\]

\[m_2 = \text{sig}_B(\ldots \text{hash}(R_B))\]

\[m_3 = R_A\]

\[m_3 = \text{sig}_B(\ldots \text{hash}(R_B))\]

\[r_2 = \text{sig}_T(m_1, m_2)\]

\[\text{sig}_T(\text{_abort, a}_1)\]

aborted?

Yes: \[r_2 = \text{sig}_T(\text{abort, a}_1)\]

No: \[\text{resolved := true}\]

\[r_2 = \text{sig}_T(m_1, m_2)\]
Race Condition

\[m_1 = \text{sig}_A(PK_A, PK_B, T, \text{text}, \text{hash}(R_B)) \]

\[m_2 = \text{sig}_B(m_1, \text{hash}(R_B)) \]

\[a_1 = \text{sig}_A(\text{abort}, m_1) \]

\[r_1 = m_1, m_2 \]
Attack

\[m_1 = \text{sig}_A (\ldots \text{hash}(R_A)) \]

\[m_2 = \text{sig}_B (m_1, \text{hash}(R_B)) \]

\[m_3 = R_A \]

\[r_1 = m_1, m_2 \]

\[r_2 = \text{sig}_T (m_1, m_2) \]

contracts are inconsistent!
Replay Attack

Later ...

\[\text{sig}_A (\ldots \text{hash}(R_A)) \]

\[\text{sig}_B (\ldots \text{hash}(R_B)) \]

\[R_A \]

\[R_B \]

Intruder causes B to commit to old contract with A

\[\text{sig}_A (\text{PK}_A, \text{PK}_A, T, \text{text}, \text{hash}(R_A)) \]

\[\text{sig}_B (m_1, \text{hash}(Q_B)) \]

\[R_A \]

\[Q_B \]
Repairing the Protocol

\[m_1 = \text{sig}_A (PK_A, PK_B, T, \text{text}, \text{hash}(R_A)) \]

\[m_2 = \text{sig}_B (m_1, \text{hash}(R_B)) \]

\[m_3 = \text{sig}_A (R_A, \text{hash}(R_B)) \]

\[m_4 = R_B \]
Another Property: Abuse-Freeness

No party should be able to prove that it can solely determine the outcome of the protocol.

Example (Alice buys a house from Bob)
Bob should not be able to show Alice’s offer to Cynthia so that he can convince Cynthia to pay more.
Conclusions

- **Fair exchange protocols are subtle**
 - Correctness conditions are hard to formalize
 - Unusual constraints on communication channels
- **Several interdependent subprotocols**
 - Many cases and interleavings
- **Finite-state tools are useful for case analysis**