Towards Automated Dynamic Analysis for Linux-based Embedded Firmware

Dominic Chen¹, Manuel Egele², Maverick Woo¹, David Brumley¹
¹Carnegie Mellon University, ²Boston University
{ddchen, pooh, dbrumley}@cmu.edu, megele@bu.edu
FIRMADYNE

• First system for full-system emulation of embedded Linux-based firmware

• Provides large-scale automated dynamic analysis
 – Built-in vulnerability detection
 – Tested on 9.5k extracted firmware images

• Objective: Continuous integration for firmware
Background

• Embedded devices are important
 – Low visibility by end-users
 – Critical network infrastructure
 – Software rarely upgraded

• Difficult to analyze
 – RISC-based architectures: MIPS, ARM, etc.
 – No direct interface into device firmware
 – Fixed hardware peripherals; no ‘Plug and Play’
 – Significant variety; hard to scale
Related Work

• Zaddach et al., “Avatar: A framework to support dynamic security analysis of embedded systems’ firmwares”, NDSS 2014
 – Software emulation with partial offload to hardware
 – Doesn’t scale: requires hardware and connection to debug port

• Costin et al., “A large-scale analysis of the security of embedded firmwares”, USENIX 2014
 – Static extraction and analysis of firmware
 – Relatively cursory analysis and can’t verify results; classic trade-offs of false positives vs. false negatives
Dynamic Approaches

• Application-level
 – Extract webpages and perform analysis
 – Custom interpreter modifications

• Process-level
 – Emulate original applications in user-mode
 – Different hardware and execution environment

• System-level
 – Boots entire filesystem with modified kernel
 – Supports all applications using original environment
FT Sites
Support Websites

Device Vendors

Firmware Repository

Filesystem Kernel

Architecture Identification

MIPS Little-Endian

Initial Emulation

Exploit Verification

“&& cat 0xDEADBEEF”

Network Reachable

eth0: 192.168.1.100
eth1: 10.0.0.1
eth2: 128.2.42.52

Network Identification

Emulator Nodes
Filesysten Recovery

• Firmware format is not standardized
 – Can be compressed, include photos, etc.

• **Solution:** Develop custom extractor for filesystems
 – Searches for UNIX-like filesystems
 – Includes heuristics to avoid recursive extraction

• Improved existing unpacking tools
 – jefferson: User-mode extractor for JFFS2
 – sasquatch: Heuristic-based extractor for SquashFS
Device Configuration

• Firmware requires NVRAM peripheral to boot
 – Used as volatile configuration store

• **Solution:** Emulate NVRAM peripheral with userspace library
 – Compatible with different C runtime libraries
 – Self-initializes with default NVRAM values used during factory reset
Network Inference

• Devices expect different network configuration
 – eth0 vs. lan0, wlan0, wan0, vs. ath0, br0, etc.

• Solution: Use custom kernel with software instrumentation to infer networking
 – Parse kernel log to infer expected configuration
 – Track IP addresses, bridges, and VLANs
 – Restart with new configuration
Automated Analyses

• Accessible Webpages
 – Checks for unauthenticated webpages
 – Command injection/information disclosure

• SNMP Information
 – Dumps public SNMP data
 – Information disclosure

• Vulnerability Detection
 – Checks for presence of vulnerabilities
Firmware Analysis Progress by Vendor

Number of Firmware Images

Downloaded Extracted Architecture Identified Initial Emulation Network Inferred Network Reachable Exploited

Other QNAP Polycom TRENDnet TP-Link OpenWrt ZyXEL Synology Tomato by Shibby D-Link Netgear
Vulnerability Analysis

• Discovered 14 previously-unknown vulnerabilities
 – New vulnerabilities can be automatically tested across entire dataset
 – Selected 60 applicable vulnerabilities from Metasploit

• Of 1,971 firmware images that were network reachable, 43%* (846) were vulnerable to at least one exploit
 – Estimated to affect 89+ different products

* Corrected
Unknown Vulnerabilities

• Discovered 14 unknown vulnerabilities that affect 69 firmware images across 12+ products using our analyses
 – Command Injection (Netgear)
 – Buffer Overflow (D-Link)
 – Information Disclosure (D-Link & Netgear)
• Responsible disclosure to vendors and CERT
 – VU#548680: Affected D-Link devices
 – VU#615808: Affected Netgear devices
 • Fix is expected by end of February/mid-March
Netgear Command Injection (CVE-2016-1555)

• Unauthenticated webpages with debug functionality were accidentally included
 – Used to write manufacturing data, e.g. MAC addresses, firmware region, and serial number
 – Can detect with our instrumentation

• Form input is passed directly as command-line argument to shell
 – Affects 65 firmware images across 7+ products
D-Link Buffer Overflow (CVE-2016-1558)

• Web server sets `dlink_uid` cookie to track sessions for authenticated users
 – Value is passed to `strlen()` then `memcpy()`

• Setting the cookie to a long string crashes the web server at e.g. `0x41414141`
 – Affects 13 firmware images across 5+ products
D-Link & Netgear Information Disclosure

• Unauthenticated services provide sensitive information
 – Web pages (CVE-2016-1556)
 – SNMP queries (CVE-2016-1557, CVE-2016-1559)

• Insecure default configuration
 – Affects 54 firmware images across 10+ products
Code Reuse

• **Sercomm Backdoor (CVE-2014-0659)**
 – Unauthenticated remote attackers can dump configuration
 – Affects 282 firmware images across 16+ products from our dataset
 – Our results show On Networks and TRENDnet are also affected

• **MiniUPnPd Denial of Service (CVE-2013-0229)**
 – Parsing flaws in open-source internet-facing UPnP daemon
 – Affects 169 firmware images across 14+ products from our dataset

• **OpenSSL ChangeCipherSpec (CVE-2014-0224)**
 – TLS implementation allows attacker to downgrade cipher
 – Affects 169 firmware images across 27+ products from our dataset
Classification of Tested Vulnerabilities

- Information Disclosure: 33%
- Command Execution: 16%
- Buffer Overflow: 5%
- Cryptographic Flaw: 4%
- Backdoor: 1%
- File Upload: 1%
- Denial of Service: 7%
- Authentication Bypass: 1%
Conclusion

• FIRMADYNE allows full-system emulation and dynamic analysis of Linux-based firmware
 – Infers network configuration of firmware
 – Emulates hardware peripherals, e.g. NVRAM
 – Automatically checks for vulnerabilities across dataset

• 43% of all network reachable firmware images are vulnerable to at least one exploit
 – Future work in investigating code sharing among OEM’s

• Open-source and available today
 – https://github.com/firmadyne
 – Patches welcome!
Questions

• Dominic Chen (ddchen@cmu.edu)