Security for the Internet Infrastructure

Paul A. Lambert

palamber@us.oracle.com

February 10, 1997
Internet Infrastructure and Security

Security for the Internet Infrastructure

- *Datagrams*, Messages
- Name Services/Directories, Routing, Time
- System Management

Infrastructure for Internet Security

- Confidentiality, Integrity, Authentication
 Non-repudiation, Access Control
- *Key Management*
- “Public Key Infrastructure”
- “*Trust Management*”
Specific Topics (this presentation)

- **IP Security (IETF IPsec)**
 - Protects IP Datagrams
 - Key Management to create “Security Associations”

- **W3C Digital Signatures (DSig)**
 - Label Systems for Assertions
 - Semantic definition for Assertions
 - Digitally Signed Web Content
Network Security

- Protects “Datagrams”
 - leaves routing information unencrypted
- Provides “end-to-end” security
 - host-to-host
 - host-to-router
 - router-to-router
 - host-to-Firewall
 - Firewall-to-Firewall
IP Security - Secure “Pipes”
IP Security - Multiple Encapsulation
Network Layer Security - History

• Defense Research in Network Encryption
 – PLI (Early 70’s)
 – IPLI (76)
 – Blacker / Caneware / NES (80’s)

• “Standards”
 – Secure Data Network System (86-91)
 Published by NIST
 SP3, SP4, Key Management Protocol (KMP)
 – Network Layer Security Protocol (ISO - early 90’s)
 – IPSEC (IETF - now)
IPsec - Network Layer

• **Base Specifications**
 – Security Architecture for the Internet Protocol (RFC 1825)
 – IP Encapsulating Security Payload (ESP) (RFC 1827)
 – IP Authentication Header (AH) (RFC 1826)

• **Other RFCs**
 – IP Authentication using Keyed MD5 (RFC 1828)
 – The ESP DES-CBC Transform (RFC 1829)
 – HMAC-MD5 IP Authentication with Replay Prevention (RFC 2085)
 – HMAC: Keyed-Hashing for Message Authentication (RFC 2104)
IPsec - Key Management

- IPsec Base Key Management - ISAKMP/Oakley
 - Internet Security Association and Key Management Protocol (ISAKMP)
 - The resolution of ISAKMP with Oakley
 - Inline Keying within the ISAKMP Framework.
 - The Internet IP Security Domain of Interpretation for ISAKMP (31320 bytes)

- SKIP
 - SKIP Algorithm Discovery Protocol
 - SKIP Extensions for IP Multicast
 - SKIP extension for Perfect Forward Secrecy (PFS)
 - Simple Key-Management For Internet Protocols (SKIP)

- Photuris
IP Security in the Internet

- ISAKMP/Oakley - vendor implementations
- SKIP Implementations
- S/WAN™
- Swan and Linux
IP Security - References

- IETF - IP Security
 www.ietf.org

- “Freeware” Network Encryption Plan
 http://kpt1.tricon.net/Org/aiip/encrypt.html

- Secure WAN Testing
 http://www.rsa.com/rsa/SWAN/home.html

- IP Security Background
 http://www.cygnus.com/~gnu/netcrypt.html
W3C Digital Signatures

- Started with “code signing”
 - ActiveX™ Signatures are only Binary
 (yes/no to submit to Microsoft policy)
 - Generalized to allow “assertions” on any information object
 - First target is Web Page labeling

- Built on PICS, Web Content Labeling
 (Platform for Internet Content Selection)
 - PICS Metalanguage for Rating Systems
 - PICS Labels or Assertions
Semantics for Assertions

- **X.509**
 - Version 3 Extensions

- **Simple Public Key Infrastructure (SPKI)**
 - Assertions

- **W3C Digital Signatures (DSig)**
 - PICS used as metalanguage for Assertions
 - Trust Modeling and Policy Engine
W3C DSig

Metalanguage defines labels
- includes human readable definitions
- machine readable format

• **Signature Block binds:**
 - rating system
 - assertion (PICS label from rating system)
 - referent (source)
 - target (hash and URL)
 - digital signature

• **Trust Modeling based on Assertions**
Dsig Label Example
W3C DSig

- **W3C DSig Applications**
 - Web content rating
 - Active content manifests
 - Software Licensing

- **Benefits:**
 - Improved Granularity of Authorization (as compared to binary)
 - Flexible policy creation
 - Common model for trust management

- **References** - www.w3.org
Summary

- IP Security could provide a strong base security mechanism for the Internet (75% solution)
- Too many protocol specific mechanisms
- Trust management and assertions would support manageable security
 - distributed security management (Federation)
 - need “good” delegation
Infrastructure Security - Issues

- “Network” Security
 - IPSEC - SSL/TLS/PCT - PPP security - SSH

- Key Management
 - SSL - ISAKMP - SOCKS - PPP - IEEE 802.10 ...

- Certificates
 - X.509 - DNS - PGP - W3C DSig

- Mail
 - PEM - MOSS - S/MIME ™