SECURITY IN AN IPv6 WORLD
MYTH & REALITY

SANOG XXIII – Thimphu, Bhutan – 14 January 2014
Chris Grundemann
WHO AM I?

• “DO” Director @ Internet Society
• CO ISOC Founding Chair
• NANOG PC
• RMv6TF Board
• NANOG-BCOP Founder & Chair
• IPv6 Author (Juniper Day One Books)
• IETF Contributor (Homenet)

• Past: ARIN, UPnP, DLNA, CEA…
THIS TALK...

• Aims to debunk the most common IPv6 security myths
• Is NOT a comprehensive look at IPv6 security practices
Let’s get to busting

SOME MYTHS…
MYTH:
I’M NOT RUNNING IPV6, I DON’T HAVE TO WORRY
MYTH:
I’M NOT RUNNING IPV6, I DON’T HAVE TO WORRY

REALITY:
YOUR APPLICATIONS ARE USING IPV6 ALREADY

- Linux, Mac OS X, BSD, and Microsoft Vista/Windows 7 systems all come with IPv6 capability, some even have IPv6 enabled by default (IPv6 preferred)
 - They may try to use IPv6 first and then fall-back to IPv4
 - If you are not protecting your IPv6 nodes then you have just allowed a huge back-door to exist!
MYTH: I’M NOT RUNNING IPV6, I DON’T HAVE TO WORRY

REALITY: YOUR USERS ARE USING IPV6 ALREADY
MYTH:
IPV6 HAS SECURITY DESIGNED IN
MYTH: IPV6 HAS SECURITY DESIGNED IN

REALITY: IPSEC IS NOT NEW

- IPsec exists for IPv4
- IPsec mandates in IPv6 are no guarantee of security
MYTH:
IPV6 HAS SECURITY DESIGNED IN

REALITY:
IPV6 WAS DESIGNED 15-20 YEARS AGO
REALITY: EXTENSION HEADERS

MYTH:
IPV6 HAS SECURITY DESIGNED IN

REALITY:

- Routing Header Type 0 (RH0) – Source Routing
 - Deprecated in RFC 5095:

 The functionality provided by IPv6's Type 0 Routing Header can be exploited in order to achieve traffic amplification over a remote path for the purposes of generating denial-of-service traffic.
MYTH:
IPV6 HAS SECURITY DESIGNED IN

REALITY:

• Hop-by-Hop Options Header
 • Vulnerable to low bandwidth DOS attacks
 • Threat detailed in draft-krishnan-ipv6-hopbyhop
MYTH: IPV6 HAS SECURITY DESIGNED IN

REALITY:

• Extension Headers are vulnerable in general
 • Large extension headers
 • Lots of extension headers
 • Invalid extension headers
MYTH:
IPV6 HAS SECURITY DESIGNED IN

REALITY:

• Rogue Router Advertisements (RAs)
 • Can renumber hosts
 • Can launch a Man In The Middle attack
 • Problem documented in RFC 6104

In this document, we summarise the scenarios in which rogue RAs may be observed and present a list of possible solutions to the problem.
MYTH: IPV6 HAS SECURITY DESIGNED IN

REALITY:
- Forged Neighbor Discovery messages
- ICMP Redirects – just like IPv4 redirects
MYTH: IPV6 HAS SECURITY DESIGNED IN

REALITY: MANY ATTACKS ARE ABOVE OR BELOW IP

- Buffer overflows
- SQL Injection
- Cross-site scripting
- E-mail/SPAM (open relays)
MYTH: NO IPV6 NAT MEANS LESS SECURITY
MYTH: NO IPV6 NAT MEANS LESS SECURITY

REALITY: STATEFUL FIREWALLS PROVIDE SECURITY

• NAT can actually reduce security
MYTH:
IPV6 NETWORKS ARE TOO BIG TO SCAN
MYTH: IPV6 NETWORKS ARE TOO BIG TO SCAN

REALITY:

- SLAAC - EUI-64 addresses (well known OUIs)
 - Tracking!
- DHCPv6 sequential addressing (scan low numbers)
- 6to4, ISATAP, Teredo (well known addresses)
- Manual configured addresses (scan low numbers, vanity addresses)
- Exploiting a local node
 - ff02::1 - all nodes on the local network segment
 - IPv6 Node Information Queries (RFC 4620)
 - Neighbor discovery
 - Leveraging IPv4 (Metasploit Framework “ipv6_neighbor”)
- IPv6 addresses leaked out by application-layer protocols (email)
MYTH: IPV6 NETWORKS ARE TOO BIG TO SCAN

REALITY: PRIVACY ADDRESSES (RFC 4941)

- Privacy addresses use MD5 hash on EUI-64 and random number
- Often temporary – rotate addresses
 - Frequency varies
 - Often paired with dynamic DNS (firewall state updates?)
- Makes filtering, troubleshooting, and forensics difficult
- Alternative: Randomized DHCPv6
 - Host: Randomized IIDs
 - Server: Short leases, randomized assignments
MYTH:
IPV6 IS TOO NEW TO BE ATTACKED
MYTH:
IPV6 IS TOO NEW TO BE ATTACKED

REALITY:
TOOLS ARE ALREADY AVAILABLE

• THC IPv6 Attack Toolkit
• IPv6 port scan tools
• IPv6 packet forgery tools
• IPv6 DoS tools
MYTH: IPV6 IS TOO NEW TO BE ATTACKED

REALITY: BUGS AND VULNERABILITIES PUBLISHED

• Vendors
• Open source software
MYTH:
IPV6 IS TOO NEW TO BE ATTACKED

REALITY:
SEARCH FOR "SECURITYFOCUS.COM INURL:BID IPV6"
MYTH:
96 MORE BITS, NO MAGIC (IT’S JUST LIKE IPV4)
MYTH:
96 MORE BITS, NO MAGIC (IT’S JUST LIKE IPV4)

REALITY:
IPV6 ADDRESS FORMAT IS DRASTICALLY NEW

- 128 bits vs. 32 bits
- Hex vs. Decimal
- Colon vs. Period
- Multiple possible formats (zero suppression, zero compression)
- Logging, grep, filters, etc.
MYTH:
96 MORE BITS, NO MAGIC (IT’S JUST LIKE IPV4)

REALITY:
MULTIPLE ADDRESSES ON EACH HOST

• Same host appears in logs with different addresses
MYTH:
96 MORE BITS, NO MAGIC (IT’S JUST LIKE IPV4)

REALITY:
SYNTAX CHANGES

• Training!
MYTH:
CONFIGURE IPV6 FILTERS SAME AS IPV4
MYTH: CONFIGURE IPV6 FILTERS SAME AS IPV4

REALITY: DHCPV6 && ND INTRODUCE NUANCE

- Neighbor Discovery uses ICMP
- DHCPv6 message exchange:
 - Solicit: [your link local]:546 -> [ff02::1:2]:547
 - Advertise: [upstream link local]:547 -> [your link local]:546
 - and two more packets, both between your link locals.
Flags: X - disabled, I - invalid, D - dynamic

0 ;;; Not just ping - ND runs over icmp6.
 chain=input action=accept protocol=icmpv6 in-interface=ether1-gateway

1 chain=input action=accept connection-state=established in-interface=ether1-gateway

2 ;;; related means stuff like FTP-DATA
 chain=input action=accept connection-state=related in-interface=ether1-gateway

3 ;;; for DHCP6 advertisement (second packet, first server response)
 chain=input action=accept protocol=udp src-address=fe80::/16 dst-address=fe80::/16
 in-interface=ether1-gateway dst-port=546

4 ;;; ssh to this box for management (note non standard port)
 chain=input action=accept protocol=tcp dst-address=[myaddr]/128 dst-port=2222

5 chain=input action=drop in-interface=ether1-gateway
MYTH: IT SUPPORTS IPV6
MYTH:
IT SUPPORTS IPV6

REALITY:
IT PROBABLY DOESN’T

• Detailed requirements (RFP)
 • RIPE-554
• Lab testing
• Independent/outside verification
MYTH:
THERE ARE NO IPV6 SECURITY BCPS YET
MYTH:
THERE ARE NO IPV6 SECURITY BCPS YET

REALITY:
THERE ARE!

• Perform IPv6 filtering at the perimeter
• Use RFC2827 filtering and Unicast RPF checks throughout the network
• Use manual tunnels (with IPsec whenever possible) instead of dynamic tunnels and deny packets for transition techniques not used
• Use common access-network security measures (NAC/802.1X, disable unused switch ports, Ethernet port security, MACSec/TrustSec) because SEND won’t be available any time soon
• Strive to achieve equal protections for IPv6 as with IPv4
• Continue to let vendors know what you expect in terms of IPv6 security features
MYTH: THERE ARE NO IPV6 SECURITY RESOURCES
MYTH: THERE ARE NO IPV6 SECURITY RESOURCES

REALITY: THERE ARE!

- **Guidelines for the Secure Deployment of IPv6**
 Recommendations of the National Institute of Standards and Technology
- Search engines are your friend!
THE REALITY OF DUAL-STACK

- Two sets of filters
- Two sets of bugs

IPv4

IPv6
THANK YOU!

Gratitude and Credit:

- Scott Hogg – My IPv6 Security Guru
- Rob Seastrom – For the Mikrotik example
- The Internet – Lots of searching
- You – Thanks for listening!

@ChrisGrundemann
http://chrisgrundemann.com
http://www.internetsociety.org/deploy360/